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NOMENCLATURE

C controller gain (response feedback)

CAe controller gain, due to control-rate limit

CO controller gain, due to control-magnitude limit

f factor defining functional dependenceof r, P, and Q on

J quadratic performance function

k,k z Kalman-filter or recursive algorithm gain

L

M

m

N

P

P

Q

q

R

r

T

t

U

V

W

Wz

WZXO

Wo

W z

Z

number of parameters identified

a priori error variance matrix

a priori error variance

number of measurements

error variance matrix

error variance

parameter variance matrix

parameter variance

measurement noise variance matrix

measurement noise variance

transfer-function matrix

transpose of row of T matrix; time

random variable describing parameter variation

measurement noise

weighting matrix

weighting matrix in performance function, on response

weighting matrix in performance function, on control rate

weighting matrix in performance function, on control amplitude

weight in performance function

matrix of response-vector measurements

V



z

z 0

At

Az n

AOn

vector of harmonics of response variables

uncontrolled response level

exponential filter parameter

sampling time-step

response increment, zn - Zn_ I

control increment, @n - 8n-I

6nm Kronecker delta function (6 = 1

@

e

00

kc

T

if n = m; zero otherwise)

matrix of control-vector measurements

vector of harmonics of control variables

input 8 required for zero response

eigenvalue

empirical factor in cautious controller

time constant

Subscripts:

j measurement number

n,m time-step

0 initial conditions

Superscript:

T transpose

Special characters:

E( ) expectation

(^) estimate

(-) a priori estimate (before measurement)
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SELF-TUNINGREGULATORSFORMULTICYCLICCONTROL

OFHELICOPTERVIBRATION

WayneJohnson

AmesResearch Center

SUMMARY

A class of algorithms for the multicyclic control of helicopter vibration and
loads is derived and discussed. This class is characterized by a linear, quasi-static,
frequency-domain model of the helicopter response to control; identification of the
helicopter model by least-squared-error or Kalman-filter methods; and a minimum
variance or quadratic performance function controller. Previous research on such con-
trollers is reviewed and related to the present work. The derivations and discussions
cover the helicopter model; the identification problem, including both off-line and
on-llne (recursive) algorithms; the control problem, including both open-loop and
closed-loop feedback; and the various regulator configurations possible within the
class. Conclusions from analysis and numerical simulations of the regulators provide
guidance in the design and selection of algorithms for further development, including
wind-tunnel and flight tests.

INTRODUCTION

A class of algorithms for the multicyclic control of helicopter vibration and
loads, currently being developed by several investigators, is characterized by (i) a
linear, quasi-static, frequency-domain model of the helicopter response to control;
(2) identification of the helicopter model by least-squared error or Kalman-filter
methods; and (3) a minimumvariance or quadratic performance function controller.
Such a control system combining recursive parameter estimation with linear feedback
is called a self-tuning regulator.

Figure 1 outlines the control task. It is desired to minimize airframe vibra-
tion, the loads on the rotating and nonrotating components, and possibly the power
requirement of the helicopter. The control parameters available are normally the
pitch angles of the rotor blades, which are positioned by actuators in the rotating
or nonrotating frame. In steady-state flight, the helicopter vibratory motion is
ideally periodic, with fundamental frequency _ for componentsin the rotating frame
and N_ for componentsin the nonrotating frame (where _ is the rotational speed of
the rotor, and N is the numberof blades; see Johnson (1980)). Hence the control
required to alleviate the vibration and loads will be periodic, and the control system
can deal with the harmonics of the input and output.

This control is referred to as multicyclic or higher-harmonic control, to dis-
tinguish it from the meanand once-per-revolution blade-pitch control (in the rotating
frame) that is required to trim the helicopter. The regulator algorithm consists of
parameter estimation, gain calculation, and the control feedback. Someof these steps
maybe performed off-line. A digital control system operating on the harmonics of the
input and output is considered here. Hence, the regulator also includes transforma-
tions between the time and frequency domains, and between analog and digital



representations of the signals. The present report is concerned with the regulator
algorithms, so the time-frequency domainand analog-digital transformations are not
considered further. Moreover, the actuators can be treated by simply including them
in the helicopter model. Hencethe simplified system outline in figure 2 is the basis
for the present work. Only self-tuning regulators and related systems are examinedin
this report. Shaw(1980), McCloud (1980a,b), and Johnson (1980) review multicyclic
control, including other feedback concepts, and discuss helicopter vibration in
general.
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Figure i.- Schematic of helicopter

multicyclic control system.

Figure 2.- Simplified schematic for a

digital frequency-domain control system.

Previous Work

McCloud and Kretz (1974) and Kretz et al. (1973a,b) tested multicyclic control

on a full-scale jet-flap rotor in a wing tunnel. They examined the response of the

blade loads and vibration to control in the rotating frame. They introduced the con-

cept of a linear, quasi-static representation of the rotor response (including the

notation "T" for the transfer function). This transfer function representation was

attributed to J.-N. Aubrun (McCloud and Kretz, 1974). The T-matrix was calculated

from the wind-tunnel data by the least-squares method. Then the open-loop control

required to minimize a quadratic performance function was calculated. McCloud (1975)

applied this method to data obtained by theoretical analysis of a Multicyclic Con-
trollable Twist Rotor (MCTR). He considered the reduction of both blade loads and

hub shears, including the influence of the relative weights on the loads and



vibration in the performance function. McCloudand Weisbrich (1978) then applied the
method to data from a wind-tunnel test of a full-scale MCTR. They considered the
control required to reduce both blade loads and test module acceleration, including
the influence of relative weights in the performance index and the sensitivity of the
control to the rotor lift. Brown and McCloud (1980) considered reduction of the test
module vibration, using the data from the MCTRtest again. They examined the influ-
ence of the relative weights on the various accelerometers, and the influence of
weights on the control magnitude in the performance function. They examined the
influence of rotor lift, propulsive force, and speed on the open-loop control.

Sissingh and Donham(1974) tested a model hingeless rotor in a wind tunnel. They
measured the vibratory hub momentand vertical shear response to swashplate control.
The transfer-function matrix and the control required to eliminate the vibration were
then calculated by direct inversion. Powers (1978) and Woodet al. (1980) tested a
model articulated rotor in a wind tunnel, measuring the response of the oscillatory
shaft forces to swashplate control. They calculated the transfer-function matrix by
several methods. The control required to null the hub forces was calculated by direct
inversion of the T-matrix. McHughand Shaw(1978) tested a model hingeless rotor in
a wind tunnel, measuring the vibratory hub momentsand vertical shear response to
swashplate control. They also considered blade loads. The input required to null the
hub momentwas estimated by extrapolation and interpolation of the test data. The
resulting control did not null two or three quantities at the sametime, but it did
reduce all three hub loads whentested in the wind tunnel.

Shawand Albion (1980) also measuredthe response to swashplate control of a
model hingeless rotor in a wind tunnel. They considered third, fourth, and fifth
harmonics of the root flapwise bending, which were equivalent to the vibratory hub
momentsand vertical shear for this four-bladed rotor. They tested closed-loop feed-
back control of the loads, with the control gains obtained by direct inversion of the
T-matrix. This controller was able to null the vibratory loads at one speed; the
loads were reduced at higher and lower speeds, but not nulled because the pitch
required exceeded the available control authority. The transient characteristics of
the controller were good.

Shaw(1980) conducted a theoretical investigation of the closed-loop feedback
control of vibratory vertical and in-plane hub shears. The control gains were again
calculated by direct inversion of the T-matrix, and he considered the influence of
errors in the estimate of the T-matrix on the stability of the controller. The sys-
tem response was calculated for an abrupt maneuver (a change in speed, hence a change
in the level of vibration and the true T-matrix), using a fixed-gain matrix. The
controller performance was goodwhen a single input was used to reduce the vertical
shear, but was poor when two input parameters (two harmonics) were used to reduce
both vertical and in-plane shear forces. The poor performance in the latter case was
caused by the T-matrix changing enough to make the controller unstable. Hencea
fixed-gain matrix was not acceptable; gain scheduling or on-line identification would
be necessary to estimate the parameters accurately enough for satisfactory closed-loop
performance. Shawused a Kalman filter for on-line identification of the T-matrix.
Whenapplied to the case involving reduction of both vertical and in-plane shears, the
control system utilizing the Kalman filter displayed good convergence and stability,
confirming its ability to handle abrupt changes in parameters.

Taylor, Farrar, and Miao (1980) and Taylor et al. (1980) conducted a numerical
simulation of the control of helicopter fuselage acceleration, using closed-loop
feedback control and a Kalman filter for on-line identification of the T-matrix.
The feedback gains were calculated to minimize a quadratic performance function. This



control concept was developed by J. A. Molusis. The simulations were for a constant
flight condition, and the performance of the system was studied in terms of the ini-
tial behavior after starting the regulator. The control system showedgood conver-
gence and accomplished a significant reduction in the vibration. The above authors
examined the influence of the relative weights on the accelerometers in the perfor-
mancefunction, on the update time, on the measurementnoise level, and the influence
of a limit on the maximumcontrol change in one step.

Hammond(1980) tested a model articulated rotor in a wind tunnel. The response
of vibratory hub momentsand vertical shear to swashplate control wasmeasured. A
Kalman filter was used to identify the T-matrix and the uncontrolled vibration level.
Feedbackof the identified vibration level was used to minimize a quadratic perfor-
mancefunction. Both deterministic and stochastic (or cautious) control algorithms
were considered, as well as an option to identify only the vibration level, not the
T-matrix. The development of these regulator algorithms was attributed to J. A.
Molusis (Hammond,1980). Test results were presented only for the cautious con-
troller. A converged solution was reached when the controller was started with
specified initial estimates. The controller reduced the vertical force significantly,
and reduced the pitch momentto someextent; however, the roll-moment reduction was
small. Molusis, Hammond,and Cline (1981) extended this investigation, considering
feedback of vertical, longitudinal, and lateral acceleration. The controllers were
tested in steady-state operating conditions, with varying wind-tunnel speed, and with
collective pitch variations. The cautious controller showedgood performance, with
smoothoperation and good tracking ability. The vertical and longitudinal vibrations
were reduced significantly, but the lateral acceleration was actually increased at
low speed. The deterministic controller was more erratic than the cautious control-
ler, and the system using identification of only the uncontrolled acceleration level
was not successful in reducing the vibration.

The research outlined above has established that multicyclic control can reduce,
and in manycases null, helicopter vibration and loads. That most of this work has
been based on experimental data reflects the difficulty of calculating vibration and
simulating the system dynamics using current analytical tools. The theoretical
investigations have been useful, however, and consistent with the experiments. As
yet there have been no flight tests of such regulators; all of the tests have been
conducted in wind tunnels. Moreover, the experimental verification of these control
concepts has either been only partially successful, or has not yet been accomplished.
The work discussed above can all be considered to deal with the sametype of regu-
lator, and most of the possible combinations of control and identification algorithms
within this class of regulators have been examinedto someextent. However, with the
exception of the work of Shaw(1980) and of Molusis, Hammond,and Cline (1981), there
has been little derivation or discussion of the regulator algorithms, and little
direct comparison of the alternatives.

Scopeof Present Investigation

The present paper provides a detailed derivation and discussion of the class of
control algorithms characterized by a self-tuning regulator applied to a quasi-static
model of the helicopter response. This work is intended to guide the selection of
algorithms for further development, including wind-tunnel and flight tests. The
paper discusses the helicopter model; the identification problems, including off-line
and on-line algorithms; the control problem, including open-loop and closed-loop
feedback; and the various regulator configurations possible within this class of
control systems. The behavior and characteristics of these regulators are examined,
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particularly by analysis and numerical simulations of a single-input and single-output
system. The conclusions about the design of the regulators are summarized, and
recommendationsfor further work are given.

HELICOPTERMODEL

It is assumedthat the helicopter can be represented by a linear, quasi-static
frequency-domain model relating the output z to the input 0 (see fig. 2) at time
tn = n At. Here z is a vector of the harmonics (both sine and cosine components) of
the loads and vibration, in either the rotating or the nonrotating frame. Performance
quantities, such as the meanpower, can also be included in z. The input 0 is a
vector of the harmonics of the multicyclic control, in either the rotating or non-
rotating frame. The sampling time-step At must be long enough for transients to die
out and for the harmonics to be measured. Typically, this requires an interval of at
least one rotor revolution. The operating condition is defined by the rotor lift,
propulsive force, and forward speed (at least). It is possible to investigate the
relationship of the vibration and loads to these operating condition parameters, in
the samemanner that the relationship to the control parameters is established (see
McCloudand Kretz, 1974). For the present purpose it is only necessary to recognize
that the helicopter model will depend on the operating condition.

Local and global models of the helicopter response are considered. The local
model is a linearization of the response about the current control value:

(a) zn = Zn_I + T(0n - 0n_l )

or Azn = TAOn. The global model is linear over the entire range of control:

(b) z = z0 + TOn n

Note that the global model also gives Azn = TAen; the global model implies that T
is independent of On, and z0 = Zn_l - TOn_I. Here z0 is the uncontrolled vibra-
tion level, and in both models T is the transfer-function matrix. Three cases are
distinguished for the global model, depending on the identification algorithm:

(bI) identify z0 only

(b2) identify T only

(b3) identify both z0 and T

If only T or only z0 is identified, the remaining parameters must be estimated by
someother means (e.g., direct measurement,off-line identification, or calculation).
It is possible to measure z0 directly by setting 0 = 0.

The quasi-static assumption requires that the update time At be long enough
for transients produced in the response harmonics by the control change to die out.
A linear, dynamic system could be described by an equation of the following form:

CO OO

i----I

FinZn_ i + E Gin0n_ I
i=0



where Fin and Gin are matrices that describe the system. Here the variables z and
8 are obtained from the data in the time-domain by a linear operator (an analog or
digital filter that is equivalent to harmonic analysis for steady-state data). The
coefficient matrices are in general a function of n since the helicopter in forward
flight is not a time-invariant system; rather it is described by periodic coefficient
differential equations. To keep the identification problem manageable, it would be
desirable to maintain the time-step At large enough so that the dependenceof the
coefficient matrices on n could be neglected, and so that the summationover i
could be truncated at one or two steps. Sucha model for the helicopter dynamics is
not considered further in the present report.

The assumption of linear response to control is expected to be reasonable, since
the available experimental data imply that only a small multicyclic control amplitude
(of the order of 0.5° to 1.5°) is required for vibration alleviation. The uncon-
trolled vibration level (z0) is indeed a highly nonlinear function of the helicopter
operating condition, and involves nonlinear aerodynamic and dynamic phenomena. Here
it is only the response to control inputs that is being linearized. There is some
evidence of nonlinear response to control over the required amplitude range, which
may require the use of the locally linearized model defined above. McCloud (1975),
in a theoretical investigation, and McCloudand Weisbrich (1978), using experimental
data, found it necessary to limit the calculation of the T-matrix to low-vibration
data in order to improve the accuracy of the identified linear model, which had a
significant influence on the predicted open-loop control. The experimental results of
McHughand Shaw(1978) show somenonlinear dependenceof the response on the magnitude
of the control. A similar effect was observed in the theoretical investigation of
Taylor et al. (1980). However, Shaw (1980) concluded (based on theoretical calcula-
tions) that the response was essentially linear, and Shawand Albion (1980) concluded
that their experimental results confirmed this linearity.

The large variation of the uncontrolled vibration level with speed is well
established (see Johnson, 1980). McCloudand Weisbrich (1978) found a low sensitivity
of the open-loop control to lift variations, by examining the calculated load allevia-
tion over a range of lifts, using the open-loop control designed for a fixed-lift
value in the middle of the range. Brown and McCloud (1980) found a weak influence of
rotor lift and propulsive force on the calculated open-loop control, but a strong
influence of flight speed on the T-matrix and the control. Shawand Albion (1980)
and Shaw(1980) found also that the T-matrix varied significantly with speed. The
variation was large enough to makea closed-loop control system using constant gains
unstable. Molusis, Hammond,and Cline (1981) found large differences in the
T-matrices measuredat three speeds.

IDENTIFICATION

In this section, algorithms for on-line and off-line identification of the
parameters in the helicopter model are derived. The four models defined in the last
section are considered:

(a) Local: Azn = T A@n

(bl) Global, identify z0:

(b2) Global, identify T:

zn - Ten = zo

zn - z0 = Ten

6



(b3) Global, identify T and z0: zn = [T z0(0:)
A common notation will be used to represent all four cases:

z n = TOn

(Note that for case (b3), it is necessary to interpret "T" in this equation as z 0

and "e" as i.) For the case when T (or at least the estimate of T) is time-varying,

the equation becomes

zn = TnO n + vn

including measurement noise

ment of e.

measurement:

vn. It is assumed that there is no noise in the measure-

The identification algorithms will be derived considering the jth

z. = 8Tt. + v.
3n n 3n on

T
where tj is the jth row of T. Note that zj and vj
script j will be omitted, to simplify the notation.

are scalars. Often the sub-

T
zn -- Ont n + vn

The task is to identify t from measurements of z. The measurement noise has zero

mean, and variance E(VnVm) = rn _nm for the jth measurement. For the local model

(interpreting "Zn" as Az n) this representation of the noise is not correct, since

noise in a measurement of zn would contribute to both Az n and AZn+ I. Hence, for

that case successive values of vn are correlated, with nonzero elements just above

and just below the diagonal in E(VnVm). This complication will be ignored.

The helicopter model includes cosine and sine harmonics for both input and output

variables. For example, with a single input and single output, the equation is

Zcn = T + vn

\ Zsn 8sn

Then for a linear time-invariant system (such as a helicopter with three or more

blades in hover) the transfer function relating z and e is defined by two param-

eters, not four:

The equation for the helicopter response can then be rewritten in terms of the param-

eter vector tT = (tc ts):



zcn ) = I_ ocnZsn esn OcnJ\ts

However, such a representation complicates the recursive identification algorithms (by

introducing matrices in place of vectors and scalars), because two measurements pro-

vide information about the same two parameters. Moreover, in forward flight, the

helicopter is described by periodic coefficient differential equations, which implies

that all four elements in this T-matrix will be different. Consequently the dis-
tinction between the cosine and sine harmonics is not introduced here.

Least-Squares Method

Off-line identification can be done by the method of least squares (Mendel, 1973;

Goodwin and Payne, 1977). Off-line identification implies constant parameters. Also,

the local model is not appropriate since it associates successive measurements. A

set of N measurements is made, using a prescribed schedule of independent control

inputs. The number of measurements N (the dimension of zj, defined below) must be

greater than the number of parameters to be identified L (the dimension of tj).
Consider the sum of the squares of errors:

N

S = n=iE(ZJn - @_tj)2 = (zj - Otj)T(z.] - Otj)

where the vector zj and matrix 0 are defined as

z. = 0 =
]

The solution that minimizes S is the least-squares estimate:

t. = (oTo)-IoTz.
] ]

or

_T= Tz.o(oT0) -_
J 3

Putting the rows together again gives

= Z@ (oT@) -I

where

Note that is a linear estimate, that is, a linear function of the data Z.



It is assumedthat the measurementnoise vn is stationary, with zero mean, and
is uncorrelated at different times [E(vnVm) = r 6nm]. There is no noise in the
measurementof e. It follows then that the least-squares estimate is unbiased,
E(tj) = tj, and the error-variance is

P = E(tj - tj)(tj - tj) T = r(@To)-I

An unbiased e_til..4 of r is

= (zj - @tj)T(zj - Otj)/(N - L)

With this type of measurementnoise, the least-squares estimate is equivalent to the
unbiased minimumerror-variance estimate, so it has the minimumerror-variance of all
linear, unbiased estimators.

Generalized Least-Squares Method

The generalized least-squares estimate (Mendel, 1973) is obtained by minimizing
the weighted sumof squares:

Sw = (z.3 - 0tj)Tw(zj - Otj)

The solution is

_. = (@Tw6)-IoTwz"
J J

The matrix W can be used to introduce weights based on the level of e or z, for
example to emphasize the measurementsat low vibration levels in order to improve the
identification in the vicinity of the optimum response.

If the measurementnoise has zero meanand variance E(VnVm)= R, then the
generalized least-squares estimate with W= R-I is equivalent to the unbiased mini-
mumvariance estimate. Hence, when the noise is not stationary or is correlated, the
weighting matrix is chosen to emphasize the more precise data. Using W = R-I, the
error variance is

p = (@TR-I@)-I

If, in addition, the noise has a normal probability distribution, then the minimum-
variance estimate is equivalent to the maximum-likelihood estimate.

Recursive Parameter Identification

Recursive algorithms will be used for on-line identification from a sequence of
measurementsof the response to control. These algorithms can be used when the
parameters are constant, or when they vary with time; either global or local models
of the helicopter can be used. The algorithms are still derived for the jth
measurements,but the subscripts j are omitted to simplify the notation. Since the



parameters maybe time-varying now, the equation of the helicopter model is

z = eTt + v
n n n n

Recursive Generalized Least Squares

A recursive form of the generalized least-squares estimate can be used for
on-line parameter identification (Mendel, 1973; Goodwinand Payne, 1977). The
weighted sumof squares

N
Sw = _ (zn - OTtn)2Wn

n=l

is to be minimized. The solution was given above. Here the weighting matrix is
diagonal, and, furthermore, the notation wn = I/r n will be used (where rn can be
interpreted as the noise variance). The error matrix is defined as

PN= (O_WNGN)-I

The effect of adding one more measurement,ZN+l, is obtained by applying the matrix
inversion formula to

T -1
PN+I = (PNl + eN+lWN+leN+1)

The result is the recursive algorithm

^ + - eT ^tn+l = tn kn+1(Zn+1 n+itn )

where the gain vector kn+I is obtained from

Pn+1= Pn - Pnen+10T+iPn/(rn+l + oT+iPnOn+l)

kn+l = Pn+len+i/rn+ l

This is the estimate for the jth measurement. In general there will be a different
weight r for each measurement,hence a different solution for P and k. Let us
assume, however, that the time behavior of rn is the samefor all measurements,
that is, that r_n for the jth measurementis a product of a function of time (n)
and a function o_ the measurement(j). It is assumedthat the starting value for P
has the samevariation. Hence

r. = f.r
jn J n

Pj 0 = fjP0

It follows that the solution for P has the same behavior:

P. = f.p
Jn ] n

I0



and that the solution for kn+I is independent of fj, that is, the samefor all
measurements. The equations given above can thus be _olved for Pn, which is multi-
plied by fj to get the true variance. With the same kn+I for each measurement,
the rows

^T = _T + _ _T0 Ttn+l n (Zn+l n n+1)kn+I

can be combined to form

Tn+l = Tn + (Zn+l - @n_n+l)k_+I

(where here z is the vector of all measurements). So the entire matrix T can be
identified in a single step, with kn+I calculated only once.

If rn = I (or any other constant), the recursive least-squares algorithm is
obtained. The solution will be the sameas that from the batch least-squares algo-
rithm. The recursive implementation might be useful in order to track the estimates
and error as the data are acquired. Eventually the old data dominate (k approaches
zero), however, so the recursive least-squares algorithm is not appropriate with
time-varying parameters.

Exponential Window

A recursive estimate applicable to the case of time-varying parameters can be
obtained using an exponential window for the weighting function (Goodwinand Payne,
1977). By setting rn = an, where 0 < _ < i, the current data are emphasized. Since
r n is continuously decreasing, it is best to solve for the gain kn+I in terms of
P_ = pn/_n:

p, = _-1[p* _ P*8 8T. P*/(_ + 8T. P*8 . )]
n+l _ n n n+l n+l n n+l n n+l

kn+I = P_+iOn+1

This algorithm can be obtained directly by minimizing the sum:

* = eS_ + T 2SN+I (ZN+1- eN+It)

Kalman-Filter Identification

A Kalmanfilter can be used for on-line identification of time-varying param-
eters (Bryson and Ho, 1969; Sageand Melsa, 1971). The equation for the jth
measurementis again

z = eTt + v
n n n n

where the measurementnoise has zero mean, variance E(VnVm) = r n 6nm' and Gaussian
probability distribution. The variation of the parameters will be modeled as a
randomprocess:

Ii



tn+ _ = t + un n

where u n is a random variable with zero mean, variance E(Un4) = Qn 6mn' and

Gaussian probability distribution. This equation implies that it is known that t

varies, and that the order of the change in one time-step can be estimated; but no

information is available about the specific dynamics governing the variation of t.

The minimum error-variance estimate of t n is then obtained from a Kalman filter:

tn = £n-1 + kn(Zn - %_tn-i )

where

M n = p +Qn-i n-I

P = (Mnl + 8 eT/r )-i
n n n n

= Mn - Mn n nn0 eTM /(rn + eTMnen)

= (I - kn0nT)Mn(l - knOT)T + k kTr
nnn

k

n Pnen/rn

= MnOn/(r n + eTM e )
nnn

Here M n is the variance of the error in the estimate of t n before the measurement,

and Pn is the variance after the measurement. Note that P depends on the control

input _, but not on the measurement z; and no matrix inversion is required, because

tn is related to only one measured variable. The Kalman filter can be considered a

time-variant dynamic system with state t:

£ = (I - kn%_)t + k zn n-! n n

kne_)_Tn + k eTt + k v(1
n-i nnn nn

where

I - k OT = I - P 8 eT/r- = P M -l
n n nn n n n n

If there are no process dynamics (Qn = 0), the Kalman filter is equivalent to the

generalized least-squares algorithm with w n = i/r n (for minimum error-variance).

The variances Qn, rn, and P0 are different for the various measurements. It

will be assumed that Q and r have the same time variation for all measurements, and

that Q, r, and P0 are proportional to the same function fj:

r. = f.r
3 n 3 n

Qjn = fjQn
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Pj 0 = fjP0

Then it follows that Pjn = fjPn and Mjn = fjMn; and kn is the same for all the
measurements. With the same gains, the rows can be combined now to form

=T + -T O )kT
n n-I (Zn n-1 n n

(here zn is the vector of all the measurements). So the entire matrix T is iden-

tified in a single step, with Pn and k n calculated only once. The basis of this

result is the assumption that the ratio of the parameter and measurement noise

variances, Qjn/rjn, is the same for every measurement. There is no reason to expect
this assumption to be true, although it may be consistent with the accuracy of the

knowledge of Q and r. The great reduction in computation is the strongest argument

of accepting the assumption.

The Kalman-filter algorithm is completed by the specification of Qn and rn.

Shaw (1980) discusses the choice of these parameters in terms of the noise sources

for the helicopter. Taylor et al. (1980) used Q/T _ 0.001, and

rn+ l = rn(Jn+i/J n)

with minimum and maximum limits on rn, and r0/z _ _ 0.3. Here J is a quadratic

performance function, so this equation keeps the noise-to-signal ratio approximately

constant. The generalized least-squares algorithm is obtained for Q = 0.

In summary, the Kalman-filter algorithms for the local and global helicopter

models are as follows:

(a) T = T + - z ^ (en 0 )]k Tn n-1 [Zn n-i - Tn-l - n-1 n

(bl) ZOn _On_1 + (Zn - Te - ^= n Z°n-1)kn

(b2) T = T + - z0 - T e )kTn n-I (gll n--i n n

(b3) [Tn_0n] = [Tn-l_0n-1] +(z n -_0n_ I - Tn_iOn) kT

and "e" in the calculation of Pn and kn becomes Ae for (a), I for (bl), e for

(b2), and (0TI) T for (b3). For the last case, in which only z 0 is identified, the

gain calculation is simplified since "8" = i and all quantities are scalars. In

this case, kn is determined solely by Qn and rn, independent of the control

input 0.

Indentifiability

Estimation of parameters with closed-loop control can introduce identifiability

questions. The equation for recursive identification of T and z 0 is

13



< nl1
Zo n ZOn_l/

+ (kn)(zn - _On_1

kz n

1 - k z \fiOn_l

z
n

The on-llne identification algorithm will be used with closed-loop control of the

system. Hence, in the steady-state limit (if it exists), the control en will
approach a constant, and so the Kalman gains will also be constant. Consider the

dynamics of the above equation when 8, k, and kz are constants. The steady-state
solution is

Zn = z0 + eTt = £0 + eT_

and the elgenvalues % are obtained from

I - ke T - %1-kz eT

Note that % = I is an eigenvalue. For

0

kz eT -kzJ _ 0

each row of the matrix is proportional to (0 T 1), so the determinant is zero as

required. The eigenvector is the solution of the equation

_o + eT_ = 0

Thus, there are undamped modes in the identified solution. The problem is that in

the steady state (with 8 constant), the algorithm is trying to identify more than

one parameter, using only one measurement. The eigenvector of this undamped mode has
components such that z0 + 8T£ = O, so it will not influence the identification and

prediction of z. Since the objective is to minimize z, it may be expected that the

steady-state controlled response will remain acceptable. An error in the estimate of

t may adversely affect the stability of the system, however.

If only z 0 is identified, then the number of parameters equals the number of

measurements always. If only t is identified, there will again be an elgenvalue
= I (with corresponding eigenvector such that 0Tt = O) if there is more than one

parameter in t, that is, if there is more than one control variable. In the hell-

copter problem, the multlcycllc control variables include both cosine and sine har-

monics, so there will always be at least two elements in t.

Difficulties must be expected in the identification with a closed-loop system,

if the number of parameters to be identified is greater than the number of

14



measurements. Astrom et al. (1977) suggest two ways to handle this problem. The

first approach is to eliminate or reduce the redundancy by constraining the values of

some parameters. Constraining some elements of t is possible (the Kalman-filter

algorithm need not be changed), or only z 0 can be identified. The second approach

is to ignore the problem, since the estimate of the parameters is an intermediate step

and errors are acceptable if the closed-loop performance of the system is good.

In the present problem, the identifiability is also improved if the parameters

do vary with time. Then the varying control input provides the independent measure-

ments needed to obtain information about all the parameters. Note also that when the

number of measurements equals the number of controls (T a square matrix), the heli-

copter equation can be written as

z = z 0 + TO = T(0 - 00)

It is desired to identify 00 in this case, so z = 0 can be achieved with closed-

loop control. The matrix T must be known accurately enough for acceptable conver-

gence and stability. In this case identifying O0 is equivalent to identifying z 0.

A related problem occurs when the local model of the helicopter is used. The

recursive identification algorithm is

tn = tn-1 + kn(Zn - Zn_ 1 - AOTtn_l ) = [I - knAOT]tn_l + kn(z n - Zn_l)

When operating under closed-loop control, A8 should approach zero in the steady

state (if it exists). In the limit of small be, the Kalman gain kn approaches a

finite constant. Hence kn A0_ is small and all the eigenvalues are near i. The

implication is that identifiability problems may also be expected with the local

model, when A8 is small.

Starting Recursive Algorithms

The usual starting procedure for these recursive algorithms involves setting P0

to a very large value, and T0 to some initial estimate (see Mendel, 1973; Goodwin

and Payne, 1977). Note that the limit p_1 = 0 gives

- T T
PI 1 = (P0 + Q0 )-I + 8181/ri = 8181/ri

which could actually be used when only one parameter is being identified. With two
o m Tr ore parameters to be identified, 8181 is a singular matrix, and matrix inversion

is undesirable in any case. This result does show, however, that large P0 is to be

interpreted as P0 >> r/82" Taylor et al. (1980) used P0/T 2 _ i0; as a result

P0/r = I00, which indeed was much larger than 8-2 .

Some special procedures may be appropriate for the start of the algorithm.

Molusis et al. (1981) used a prescribed set of initial control values followed by

off-line least-squares identification to obtain initial values of z 0, T, and P. A

stricter than normal limit on the magnitude or rate of change of the control could be

used initially. In particular, the use of a time lag in the controller will prevent

the implementation of a large, incorrect control at the start, if the initial esti-

mate of T is too much smaller than the actual value. In general, care must be taken
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in the use of the identified parameters until new measurementsare obtained to update
the estimates.

Numerical Implementation

Implementation of the identification algorithms requires procedures designed to
minimize the numerical errors. Goodwinand Payne (1977) discuss such procedures for
batch least-squares identification. Goodwinand Payne (1977), and Anderson and Moore
(1979) discuss procedures for recursive identification (specifically, the square-root
algorithm).

Twoforms of the equations for P and k have been given (see Gelb, 1974;
Anderson and Moore, 1979). The second equation for P is less sensitive to numerical
errors, and the second equation for k is more appropriate if r is small. Note
that not all combinations of the two equations are possible: the first equation for
P can be followed by either k equation; or the second equation for k can be used,
followed by either P equation. In addition, the fact that P is symmetric can be
used to reduce the required computation, and also to reduce the numerical errors.

CONTROL

The control algorithms will be based on the minimization of a performance index
J that is a quadratic function of the input and output variables. This function will
depend on the input and output at the nth tlme-step, and perhaps at past times, but
not on the future values. If all the parameters in the model are known, a determinis-
tic controller is obtained. With unknown, estimated parameters, the certainty-
equivalence principle maybe applied (without regard to the question of the validity
of the principle): the deterministic control solution is used with the estimated
parameter values. Alternatively, a cautious controller (Wittenmark, 1975) can be
obtained by minimizing the expected value of the performance function.

Such control systems are called passive-adaptive or nondual controllers
(Wittenmark, 1975; Goodwinand Payne, 1977). The performance index does not consider
that future measurementswill be made, so it ignores the possibility of learning from
the measurements. A dual or active-adaptive controller (Wittenmark, 1975; Goodwinand
Payne, 1977) actively probes the system to reduce the parameter errors. The control
is used for learning, to improve the parameter estimates, but the improvement is
achieved at the expenseof short-term deterioration of the closed-loop performance.

Performance Function

The quadratic performance function to be used is

J = zTw z + 8nTWe0n+ AenTWA8AeHEn n

where A0n = en - 0n_I. The vectors 8 and z contain the harmonics of the input and
output. Typically the weighting matrices are diagonal, and have the samevalue for
all harmonics of a particular quantity. Then J is a weighted sumof the mean
squares of the vibration, loads, and control. The matrix We constrains the ampli-
tude of the control, while WA0 constrains the rate of changeof the control.
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To simplify the specification of the weighting matrices, they can be written as
follows:

W =D
Z Z

w e = De/g

WAe = DAeT

where D z, De, and DAe are diagonal matrices. The factor g can be interpreted as

the gain of the control loop, and T defines the time-constant of the control lag.

The output vector z may include terms from several transducers, so D z can have

different weights for each transducer (the values of the weights must also account

for different units). Often the weights are the same for all harmonics of a particu-

lar measurement. The matrices D e and DAO may also have different weights (for
example, to reflect different limits on the collective and cyclic actuators), and the

weights may increase with harmonic number to account for the actuator frequency

response characteristics.

Deterministic Controller

The control required to alleviate the helicopter vibration is found by substitut-

ing for zn in the performance function, using the helicopter model, and then solving

for On that minimizes J. Both the global and local models of the helicopter can be
written as

= Onzn Zn_ I + T( - en_l)

Substituting for zn and setting 3J/_ejn = 0 (for each component in the vector On) ,

gives a set of equations that can be sol_ed for en. The result is

e = Cz + .(CAe - CT)en"n n-I i

or

A8n = CZn_ I - Ceen_ z

where

C = -DTTw
Z

Ce = DW e

CAe = DWAe

D = (TTWzT + W e + WA e)-1

For the global model, a second form of the solution can be obtained by substitut-

ing Zn_ I = z0 + Ten_ I. The result is
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e = Cz + CAeOn_n 0 1

or

Aen = Cz0 - (C0 - CT)en-l

This equation defines an open-loop control determined by the uncontrolled response
level (z0). The preceding result defines a closed-loop control obtained by feedback
of the measured response (Zn_l). The open-loop case is applicable only with the
global model of the helicopter.

When We = O, the solution reduces to Aen = CZn_1; and for WAe= 0, it reduces
to 0n = Cz0. If both W8 and WAe are zero, then CT = -I. Finally, if
We = WAe= O, and the numberof controls equals the numberof measurements(so T is
a square matrix) then C = -T-1 (regardless of Wz).

From the above derivation it follows that the gains used to calculate On should
be based on the parameters (T and z0) at the nth step. However, the recursive iden-
tification algorithm obtains the estimate Tn only after the measurement zn, which
is a result of the 0n input, is obtained. The best that can be done is to use the
a priori estimate Tn, which is the prediction of the parameter before the measure-
ment is made. The model used here for the variation of the parameters gives simply
Tn = Tn-1" Thus, the control gains are evaluated using the parameters identified at
the (n - l)th time-step.

The performance function used results in proportional control (feedback of Zn_l
or z0). An integral-proportional controller can be obtained by adding the term

T
YnWyYn

to J, where y is the integral of z:

Yn = Yn-1 + Zn

The control to minimize J then includes feedback of Yn-1 as well (see Molusis
et al., 1981). Such integral control is not considered further in the present paper.

Controller Dynamics

To examine the dynamics of the system using closed-loop control, substitute
Zn-l = z0 + Ten_I + Vn_I into the control law based on identified parameters:

e : [C(T - T) + Cz_e]en n-i + C(z 0 + Vn_ I)

= D{[TTWz(T - T) + WAe]e n i - _TW (Zo + v )}- Z n-i

where

D = (TTWzT + W e + WAe)-i
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The stability is determined by the eigenvalues of the matrix

D(TTWz(T- T) + WAe)

The steady-state solution is

where

e = -D*@TWzz0

z = (I - TD*@rWz)Z0

D* (TTwz= T + We)-1

The dynamic response is determined by the estimation error (T - T) and the rate limit
(WAe). If there is no estimation error and WAe= 0, the steady-state solution is
reached in a single step:

e = -DTTw(z 0 + v )n z n-i

for all n. If
direct inverse:

(regardless of the estimation error or WAO).
responds to the measurementnoise.

We = 0 and T is a square matrix, the steady-state solution is the

O = -T-Iz 0
z = 0

Note however that the system always

Using the identified parameters, the open-loop control is:

8n = D(-TWzZ0+ WAO0n-I)

The stability is determined by the eigenvalues of the matrix DWA0.
solution is

O = -D+TTWz_0

The steady-state

z = z0 - _+ITw_ z0

where

D+ = (@TWz@+ We)-1

The transient response is due solely to the rate limit WAe.
state solution is reached in a single step. If We = 0 and
the steady-state solution is

0

If WAe= 0, the steady-
T is a square matrix,
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z = z0 - T9-i£
U

which depends on the estimation errors.

When the open-loop control is used with on-line identification, it is necessary

to consider the effect of the identification on the controller performance. The

steady-state solution (if it exists) of the Kalman filter is

z : zo + TO = _o + Te

(whether z 0, or T, or both are identified). Hence the steady-state control response
will be

0 = -(TTWzT + Wg)-ITTWz[Z ° + (T - T)e]

or

e =-D*T-w^T Z

Z 0

z = (I - TD*TTWz)Z 0

which is identical to the result for closed-loop control (Zn_ I feedback). Specifi-

cally, the control system produces z = 0 if W e = 0, and T is a square matrix,

even though the control is based on z0 (which includes estimation errors). Hence,

in terms of the steady-state performance, the open-loop and closed-loop controllers
are identical when used with on-line parameter identification.

On-line identification influences the regulator dynamics by changing the param-

eter estimates at each step. It is assumed that the parameters vary slowly enough

that the identification and control problems can be separated in the design of the

regulator. In fact, however, recursive identification produces a nonlinear feedback

control system, because of the dependence of the Kalman-gain k on e, the dependence

of the controller gains on _, and the appearance of the combination Te (since the

parameter estimates as well as e are dynamic variables). On-line identification

also makes the open-loop case a feedback control system, since T and z0 then depend
on the measurement zn. However, the combination of open-loop control with on-line

identification of only z 0 is still a linear system, since in this case the Kalman

gain is independent of the system control or response.

Controller Gain Update

With a new estimate of T, it is necessary to reevaluate the control gains,
which requires

Dn = (_TWnz n_ + We + WA8)-I

The Kalman filter gives the parameter update in the form

= T + ekT
n n-I
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where e and k

relationship

are vectors. Matrix inversion can be avoided by using the

(A + BcT) -I = A -I - A-IB(I + cTA-IB) -ICTA-I

(see Sage and Melsa, 1971). Writing

D-I = _T W _ + Wo + + k[(_T + i )Wze ] + [(@T_I 2 ke T) elk Tn n-1 z n-I WAE) -i 2- keT T + i Wz

= D-I + bc T + cb T
n-I

there follows

D = (A-I + cbT) -l = A - AcbTA/(I + bTAc)
n

-I Dn ibcTDn i/A = (Dn_ I + bcT) -I = Dn_1 - - - (I + cTDn_ib)

Cautious Controller

A cautious controller, which accounts for the parameter uncertainties, can be

obtained using the expected value of the performance function (see Wittenmark, 1975;

Molusis et al., 1981):

= EIE zj 3n] T TW n
j 2 + A6w z. + 6 Woe n AOAO

J

It is assumed here that W z is diagonal, and 0 is deterministic. For the case of

closed-loop control (Zn_ I feedback), there follows:

z_ E + A_Tt.= W Z.

E Wzj j zj Jn-1 n jn

I n)= _Wz.(Z " + Ae_tjn + Ae Wz Pj A0 n
J ] Jn-1 \ j J

using E(t) = t and E(tt T) = _T + p. It is the actual value of zn that is to be

minimized, so the measurement noise is not included in the above expression. The

parameter error variance matrix P is given by the Kalman filter (or it is calcu-

lated directly for off-line identification). However, Pn is not available until

after the solution for en is obtained. To avoid a very complex equation for On ,

the a priori estimate error

M =P +O n_n n-i -i

will be used. This is consistent with the use of the a priori parameter estimates

(tn = tn-1 ) in the controller gains. Hence the performance function becomes
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J:Z ,nzn+° 0°n+ +E w,jMjo  °n
J

The solution is identical to that for the deterministic controller, using the identi-

fied values of the parameters, and with WA8 replaced by

zj Jn = W&8 Mn Wzj %c
-j

since Mjn = fjM n. The factor %c is introduced for an empirical modification of the
controller if aesired.

For the case of open-loop control (z0 feedback), there follows

WzjZ _ (zj 0 j
j J

^ T^ )2 + _ (Mzz + 2enTMtz + eTM= _ (zj 0 + entjn n tten )

j Wzj j Wzj

where

So the performance function becomes

J = zTw z
n zn

+ @TWsen + (SnT 1)lj_ WzjMjn)(eln) + ASnTWAeAOn

The solution for the control that minimizes J is then

en = Cz o + CA88n_ 1 + c o

The gain matrices C and CA8 are the same as for the deterministic controller, using

the identified values of the parameters and with W e replaced by

W 8 + (Mtt)nl _ Wzjfj)_c
\J

The new constant term is

C O = -D(Mtz)nlj_ Wzjf)%c
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If only the T-matrix is identified, the co term is not present. If only z0 is
identified, the cautious controller is not applicable (since it is identical to the
deterministic controller then).

In summary,the cautious controller introduces for the closed-loop case a con-
straint on the rate of change of the control (an effective value of WAS) proportional
to the current parameter error-variance. For the open-loop case, a constraint on
control magnitude (effective WS) is introduced, and an offset (cO) if z0 is being
identified. These are the changes required to obtain the minimumexpected value of
the mean-squared response whenthe parameter estimates are in error.

Dual Controllers

Optimal dual controller solutions are generally too complex to be practical
(Wittenmark, 1975), but there has been work on suboptimal solutions that introduce
learning in some fashion. There are very simple approaches, such as adding a pertur-
bation signal to the cautious controller, or constraining the minimumcontrol level
(Wittenmark, 1975). A dual controller is defined by the minimization of a multistep
performance function:

N
JD = E Jn

n=i

where Jn is the one-step function used above. The solution for the general stochas-
tic problem is not practical for the present purposes. Molusis et al. (1981) obtained
an approximate solution by linearizing JD about the one-step control law. The
resulting dual controller is similar to a reduction of the weight Wz in a cautious
controller (Molusis et al., 1981). Another approach is to add a term to Jn that is
a function of the estimation error (Wittenmark, 1975):

JD = J + %DG(Pn)n

for example, G = EnlPnl (Goodwinand Payne, 1977). Alternatively, Jn can be mini-
mized subject to an additional constraint, such as Tr p_l Z % (Wittenmark, 1975).

A simple learning controller can be obtained by using G = -IMnl/IPnl,where M n

is the estimation error before the measurement, and Pn is the error after the mea-

surement (Goodwin and Payne, 1977). From the Kalman-filter equations it follows that

IMnl/IPnl -- 1 + 8TM 0 /rnnn n

so the performance function becomes

JD = Jn - %DS_MnSn/rn

Recall that "Sn" is interpreted as A8n for the local model, or as (0_ i)T, if both

T and z0 are being identified. This performance function has the same form as that
for the cautious controller, hence the same solution is obtained, with now
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j J

Hence, Ic = 1 for the cautious controller, and Ic < 0 for a learning controller.

The learning controller introduces an effective contribution to W e or WA0 equal to

(-IDMn/rn), so the constraint on the control is reduced by an amount proportional to

the parameter error-variance. There is also an offset term (c0) if z0 is being

identified. This learning controller is convenient since it leads to a quadratic

form for JD" However, a large and negative effective value of W 0 or WA0 can pro-

duce a divergence of the control.

REGULATORS

A controller combining recursive parameter estimation and linear feedback is

called a self-tuning regulator (Astrom et al., 1977; Astrom and Wittenmark, 1973;

Goodwin and Payne, 1977). The most common configuration consists of recursive least-

squares parameter estimation and a minimum variance controller. Self-tuning regu-

lators have been developed for systems with constant parameters, but there have also

been applications to systems with slowly varying parameters (Astrom et al., 1977).

Usually the system model includes the dynamic behavior. Other estimation methods

(e.g., exponential window, extended least squares, or maximum likelihood) and other

controllers (e.g., quadratic cost function) have been used (Astrom et al., 1977).

The self-tuning regulator and the plant form a time-varying, nonlinear, stochastic

system. Of concern are the stability of the system, the convergence of the regulator,

and identifiability when the system operates closed-loop (Astrom et al., 1977). There

are some theoretical results for the least-squares identification and minimum-variance

controller combination, but primarily these issues have been investigated by

simulation.

Classification

In the present work, self-tuning regulators are constructed for the alleviation

of helicopter vibration using multicyclic control. The most general case involves

recursive identification, using a Kalman filter, and a quadratic performance function

controller. There are two fundamental options for the identification: the use of

either an invariable algorithm or an adaptive algorithm. For the invariable algo-

rithm, the constant parameters are identified off-line by applying the least-squares

method to a succession of independent input and output measurements. For the adaptive

algorithm, the parameters are recursively identified on-line, using a Kalman filter

(or possibly the exponentially weighted generalized least-squares method).

There are also two fundamental options for the controller: open-loop or closed-

loop algorithms. For the open-loop algorithm, the control is based on the uncon-

trolled vibration level z0 (identified either on-line or off-line). For the closed-

loop algorithm, the control is based on feedback of the measured vibration, Zn_ I.

Hence, there are four regulator options. The invariable open-loop regulator

(Fig. 3) consists of off-line identification of T and z0, calculation of the con-

troller gain, and then application of the fixed control e = Cz U (WA0 = 0 must be

used). This is the simplest and most stable option, but it may be expected to have

poor performance if the parameters vary or are estimated incorrectly.
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The invariable closed-loop regulator

(fig. 4) consists of off-line identifi-

cation of the parameters and calculation

of the fixed-gain matrix, and feedback

of the control based on the measured

response. The feedback improves the

steady-state performance, although it

also means the control will respond to

measurement noise. The loop closure

introduces concern about dynamic stabil-

ity, particularly with estimation errors

or varying parameters.

The adaptive open-loop regulator

(fig. 5) consists of on-line identifica-

tion of the parameters and calculation

of the gain matrix, with control based

on the identified value of z0. The

performance of the system is expected

to be increased by use of on-line iden-

tification to reduce the parameter

errors.

The adaptive closed-loop regulator

(fig. 6) consists of on-line identifi-

cation of the parameters and calcula-

tion of the gain matrix, with feedback
of the control based on the measured

response. Note that the Kalman-filter

gains can be calculated in the time

interval between application of en to

the helicopter and the measurement of

the resulting zn. This regulator,

using both feedback control and on-line

parameter identification to improve the

system performance, is the most complex

option. Figure 6 illustrates identifi-

cation using the global model of the

system. The regulator using the local

model has the same form, except that

z 0 is not identified.

Several models of the helicopter

have been discussed, particularly with

regard to the identification algo-

rithms; however, not all of these models

are appropriate for each regulator.

With off-line identification, it is not

possible to identify only z U, since the

least-squares method is required to
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Figure 3.- Invariable open-loop regulator.
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z n

CONTROL

STORED 0 n
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Figure 4.- Invariable closed-loop regulator.

identify T. Off-line identification of only T by the least-squares method is pos-

sible, since z 0 can be measured directly by setting e = 0. For the adaptive open-

loop regulator, the global model with only T identified is not appropriate, because

the controller requires z 0. On-line identification of only z0 (with off-line

calculation of T) is feasible for the adaptive open-loop regulator. For the
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ON-LINEIDENTIFICATION adaptive closed-loop regulator, on-line

identification of only T (with off-line

calculation of z0) is possible. The
KALMANGAINS global model with on-line identification

I of only z0 is not appropriate for the
STOREDMnORPn-1 adaptive closed-loop regulator, since the

On'rn system then reduces to the invariable

kn I

A

CONTROL FEEDBACK GAINS
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t}n+ 1

M I
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Figure 5.- Adaptive open-loop regulator.

CLOSED-LOOP CONTROL

HELICOPTER

TRUE T n, Zon

STORED Zn_l, 0n_ 1

z n

ON-LINE IDENTIFICATION

KALMAN GAINS l

STORED M n OR Pn-1

Qn, rn

closed-loop option. Finally, the local

model is not appropriate with off-line

identification, and it cannot be used for

the adaptive open-loop regulator (which

requires z0).

In summary, the global model with

identification of both z 0 and T can be

used with all four regulator options.

Identifying only T is possible for all

options, except the adaptive open-loop

(z0 must still be estimated, of course,

by direct measurement for the invariable

options or by off-line identification for

the adaptive option). On-line identifica-

r
IP kn_

I KALMAN FILTER
STOR ED ZAOn_l, "?'n_l

CONTROL FEEDBACK GAINS

STORED (_n

tion of only z 0 can be used for the

adaptive open-loop regulator, and the

local model can be used for the adaptive

closed-loop regulator.

Previous Work

Previous work has been reported on

the application of each of these four

regulator options. Table 1 summarizes

these investigations (see also the discus-

)n+l

w's (fj)

I

I

I

I

Mn+ll

Figure 6.- Adaptive closed-loop regulator.

sion of previous work in the Introduc-

tion). The work has been both experimen-
tal and theoretical. The identification

techniques considered include the off-line

least-squares method; recursive estimation

by a Kalman filter; and direct inversion

of the measured data (when the number of

independent control inputs equals the num-

ber of controls). The controller gains

have been determined by (I) minimizing a

quadratic performance function, sometimes

with weights on the measurements and con-

straints on the control; (2) minimizing

the expected value of the performance

function (the cautious controller); and

(3) by direct inversion of the T-matrix

(when the number of measurements equals

the number of control variables).

The invariable open-loop regulator has received the most attention. Although

these investigations have been based primarily on experimental data, there has been
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no experimental confirmation of the regulator performance when the open-loop control

is applied. The open-loop control required has been calculated using the measured

T-matrix, and the response resulting when this control is applied has been predicted.

The investigations have considered blade loads (McCloud and Kretz, 1974; Kretz et al.,

1973a,b; McCloud, 1975; McCloud and Weisbrich, 1978), hub reactions (McCloud, 1975;

Sissingh and Donham, 1974; Powers, 1978; Wood, Powers, and Hammond, 1980), and

accelerations (McCloud and Weisbrich, 1978; Brown and McCloud, 1980).

There has been both experimental and theoretical work on the invariable closed-

loop regulator, including some direct experimental verification (Shaw and Albion,

1980). The vibration was successfully nulled at one speed, but not at higher or

lower speeds, because the control authority was exceeded. The transient characteris-

tics of the controller were good.

The performance of the adaptive open-loop regulator has been tested in terms of

its starting response, ability to track speed variations, and behavior with collective

changes (Molusis et al., 1981). There has been partially successful experimental

verification of the vibration reduction using this regulator (Hammond, 1980; Molusis

et al., 1981). Three quantities were controlled, using the three swashplate inputs,

but only two were significantly reduced; the roll moment (Hammond, 1980) or lateral

acceleration (Molusis et al., 1981) was only slightly reduced, or was even increased.

Molusis et al. (1981) considered six controllers in the adaptive open-loop class:

deterministic, cautious, and dual forms with both T and z0 identified; and a deter-

ministic form with only z 0 identified, including perturbation and proportional-

integral feedback variants. In their terminology, the first three controllers were

called adaptive and the last three were called gain-scheduled (since the gains depend
only on T). The perturbation variant should be identical to the basic controller

with only z0 identified, since the T-matrix perturbation was not included in the

controller-gain calculation. The cautious controller was most satisfactory, achieving

the minimum vibration within a few iterations after starting, with smooth control

variations and no indication of drift in steady conditions. The controller tracked

well with velocity changes. The deterministic controller was more erratic in opera-

tion; introduction of a rate limit produced smooth control variations, but the system

was then considered too sluggish. The regulators with only z 0 being identified were

not successful in reducing the vibration (it was conjectured that the failure was due

to nonlinearity in the T-matrix).

The performance of the adaptive closed-loop regulator has been examined in terms

of the starting response (Taylor et al., 1980) and the response to abrupt changes in

the parameters (Shaw, 1980). There has been no experimental verification of this

regulator. Only the local model has been considered. Taylor et al. (1980) found that

a limit on the maximum control increment was needed for smooth operation (I_e I < 0.i °

in a single step, for each harmonic). They also examined the influence of the time-

step and measurement noise on the system performance. An update interval of two

revolutions produced somewhat smoother response, but the system converged faster with

a one revolution increment. With a measurement noise level above 20% of the uncon-

trolled response, the regulator did not converge. Taylor et al. (1980) actually

identified Zn_ I as well as T, which leads to inconsistencies. They considered the
helicopter model in the form

ZnZnliCn)
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Henceat the (n - 1)th step, Zn_I was a measurement;at the nth step, Zn_I became
a parameter. Furthermore, the model of the parameter variation used with the Kalman
filter gives Zn_I = Zn_2 + Uzn_2, which is not consistent with the helicopter model,
Zn_I = Zn_2 + T(0n_I - @n_2).

ANALYSISANDSIMULATION

The regulators that have been defined in the preceding sections must be analyzed
in more detail, in order to further develop useful designs for helicopter vibration
alleviation. Of concern regarding the on-line identification are the transient
behavior and convergence; identifiability; and the selection of the parameters in the
algorithm. Of concern for the controller are the interpretation and selection of the
weights in the performance function; the possible use of cautious or dual controllers;
and the stability and steady-state performance of the controlled system, including
the effects of measurementnoise, parameter-estimation errors, and nonlinear or time-
varying parameters. Someof these issues will be examinedhere by considering a
system with only one measurementand one control. The actual helicopter problem
involves sine and cosine componentsfor each harmonic, and usually at least three
harmonics or variables for the input and output. The single-input and single-output
case is useful however, because of the simplifications that result from dealing with
scalar equations. The identification proceeds by rows in fact, so with a single
input there actually is a scalar equation in the identification algorithm for each
measurement. The weighting matrix Wz then is used to balance the control of the
various output variables (the specific influence of Wz depends on the elements of
T). For the general multi-input and multi-output case, it is necessary to deal
directly with the matrix equation given above.

The characteristics of the regulators will be analyzed in the following sections
by examining the equations for the case of a system with only one measurementand one
control. In addition, numerical simulations were performed for several of the cases.
The general behavior exhibited in the numerical simulations will be described,
although it is not considered appropriate to present quantitative results from simu-
lations of such a simple system.

Open-LoopControl

For open-loop control, involving feedback of the uncontrolled vibration level,
the deterministic controller is

8n = C_0 + C&eSn_I = (-TWz_0 + WAeSn_l)/(@ZWz + We + WAe)

With a single output, Wz is not relevant; it is retained however, to aid in the
interpretation of the parameters for the multivariate case. For the invariable open-
loop regulator, WA0 must be zero; for the adaptive open-loop regulator, T and Zo are
the estimates at the (n - l)th step. The stability of this controller is determined
by the eigenvalue

+We + )x = wAs/(@2wz wAe
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The corresponding time-constant is

T = At%/(l - %) = AtWA@/(T2W z + We)

so the time lag is directly proportional to WAe/T2Wz .

W 0 , but

T/At _ WAO

0ss/-_0 _2w
z

The time lag is reduced by

where ess is the steady-state response (given below). So the rate limit, which is

proportional to 0ss/m, is independent of W 0.

The steady-state limit of the controller is

en = -TWzZ01(T2Wz + We)

(which is reached immediately if WA@ = 0). Now define _0 as the solution of

z = z 0 + Te = 0, and let T o = T at 0= e 0. Similarly, 0 o is the solution of the

equation using the estimated parameters, z = z0 + Te = 0; hence 00 -z0/T. Then

the steady-state control is

el60 = 11(I + wel@2wz)

and the system response is

z/zo = (i - T_o/@Zo + Wol#2Wz)l(1 + Wel#2Wz)

The response in the presence of parameter errors depends on both T and 20, which may

have either canceling or reinforcing effects. Hence, it is clearer to write the

response in terms of the error in the estimate of 00:

zlz0 = (i - Te01r000 + Wel#2Wz)/(l + wel#2Wz)

With no estimation errors, the result is

zlz0 = (WelT2Wz)/(l + We/T2Wz) = i - e/S0

Note that a feedback control law of the form 0 = -Kz gives z/z 0 = i/(i + KT), which

implies KT = T2Wz/W0. Thus, W e may be interpreted as the inverse of the gain.

Closed-Loop Control

For closed-loop control, involving feedback of the measured vibration, the

deterministic controller is

= C e 8nen Cz + (I-)n-I -i

+ ]l(_2w + w e + WAO)= [-TWzZn-i + (@2Wz WAe)On-I z
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where T is the estimate at the (n - l)th step. To examine the closed-loop perfor-

mance, substitute Zn_ I = z 0 + Ten_ I + Vn_ I, to obtain

8 1 {__WzZ 0 + [T(T - T)W z + WAO]8 n i - TWzVn-l}
n _ _

where

A = T2W + W e +z WAe

It is assumed that the parameters vary slowly enough to be considered constant for the

present purposes. Nonlinear behavior of the real system will be allowed however, so

T = T(On_l). Note there are no dynamics in the helicopter model, since the quasi-
static assumption gives a model of the form zn = f(On). The dynamics are introduced

by the control law. An equation for the response is obtained by substituting

On = (zn - z0)/T in the controller equation, and including the measurement noise in

Zn_ I. For a linear system the result is

i ^ ^ - TTWv
Zn = _ {Wez0 + [T(T - T)W z + WAe]Zn_ I z n-l

Here z is the true response of the system, without the measurement noise.

For the ideal case, a linear system with no estimation errors, these equations

reduce to

e 1
n = 7 (-TWzZ0 + WAeen_ I - TWzVn_ I)

i
z = + - T2W v )
n _ (Wezo WAoZn-I z n-I

The eigenvalue is

+w o + )= WAo/(T2W z WA@

and the steady-state solution is

e/e o = i/(i + Wo/T2W z)

z/z o = (We/T2Wz)/(l +We/T2W z)

If the system starts with e 1 = O, then z I = z 0 and

= z /(T2W +W e +WAe)ez -TWz o z

= + W e + WAe)z2 zo(W e + WAO)/(T2W z

It is observed that the eigenvalue is the same as in the open-loop case. The time lag

is again determined by WAe. This ideal system is always stable (Ill < i). The

steady-state solution is also the same as that for the open-loop case (for no estima-

tion errors); hence, the interpretation of W 0 is the same. If WAe = O, the
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steady-state solution is reached immediately (at n = 2). The steady-state response

to the measurement noise is

o_Ir = (TWzlA)21[I - (wAelA)Z ]

= (TWz)Z/[(T2W z + We)(TzW z + W 8 + 2WAe)]

2
and dz = Toe" Here o_ and o z are the mean-squared responses of en and zn to the

noise v n, which is a Gaussian random variable with zero mean and variance E(v 2) = r.

These results can be written

= + /(T2W + W e + 2W&o)(°_/02)/(r/z_) (r2Wz We) z

(o_Iz_)l(rlz_) = (el00)2(T2W z + Wg)I(T2W z + We + 2wAe)

which are both order one. The rate limit WAe reduces the response to measurement

noise.

For a linear system with estimation errors, the eigenvalue is

^ ^

- +W e ÷k = [T(T T)W z + WA@]I(T2W z WA0 )

= (I - T/_ + wAe/_2Wz)/[1 + (we + wAe)/_2Wz]

For stability, Ikl < I, it is thus necessary that

-We/T2W z < T/T < 2 + (W e + 2WAe)/T2Wz

If W e = WAe = 0, the criterion is that 0 < T/T < 2; that is, the estimated value of

T must have the same sign and at least 50% the magnitude of the true value. It is

found that this result is unchanged by the addition of the steady-state Kalman-filter

dynamics. The control constraints W 8 and WA8 improve the stability range. The

steady-state solution is now

0 = (-z_/T)/(1 + W0/TTWz)

z = z0(W0/TTWz)/(I + W0/TTWz)

So with feedback of Zn_ I, the steady-state response is not sensitive to estimation

errors, except for a c_ange in the influence of W e . Specifically, with W e = 0, the

null response z = 0 is always achieved. Feedback of the measured vibration intro-

duces a response to measurement noise however, and estimation errors do influence the

system stability. The stability range is large, but on-line identification is still

likely to be required for the helicopter problem.

For a nonlinear system, T(Sn_l) must be used in the equation for On . The

steady-state solution is still given by the above equations. Now an explicit equa-

tion for the control is not possible, since T depends on e; but still, z = 0 is

achieved if W e = 0. Convergence and stability of the nonlinear equation for e n

are difficult to examine analytically, but the local stability can be calculated.
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Consider the nonlinear equation en = a + b(0n_1)en_1, and a solution On of this

equation for the specified initial conditions. For a perturbation about this solu-

tion, On = en + _8n, the linearized equation is

_en = (b + 0 _b/_O)6en_ I

where the coefficient is evaluated at O = en_ I. Hence the eigenvalue is

i

% = b + @b' = 7 [_(_ - T - @T')Wz" + WAol.

for the present problem, and the stability criterion becomes

-W@/T2W < (T + @T')/T < 2 + (W@ + 2WAo)/T2Wz z

So the estimate T must be close to T + @T', which is just the local slope of the

response z(@).

Caution and Learning

Accounting for uncertain parameters in the performance function has the effect

for open-loop control of replacing W@ with (W@ + %cMttWz ), and introducing the
offset

c o = -% DM Wc tz z

if z 0 is identified. For the cautious controller, %c = i. The open-loop control
algorithm than becomes

8n = (-TWz _0 - MtzWz + WAeOn-i )/(_2Wz + We + WA8 + MttWz)

which has the steady-state solution

8/_ 0 = (I + Mtz/T_0)/(l + Ws/T2W z + Mtt/T2 )

z

z 0

i - (T00/T0O0)(l + Mtz/T_0) + We/T2W z + Mtt/T2

1 + Wo/T2W z + Mtt/T2

With parameter errors there is a shift in the control required to obtain the minimum

expected value of J. The control is always decreased by an error in T, while Mtz

can produce a control change in either direction.

For closed-loop control, WAS is replaced by (WA8 + kcMttWz), where again %c = 1
for the cautious controller. The control algorithm becomes

8 = [-TW z + (T2W + + ]/(T2W + W@ + + Mn z n-1 z WA@ MttWz)en-1 z WA8 ttWz )

The steady-state solution is not influenced by the caution in this case, but the

response to measurement noise will be decreased and the stability range increased.
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The effectiveness of the caution is determined by the normalized squared errors,

Mtt/T 2 and Mzt/_ 0. For example, an rms error of 20% gives Mtt/T 2 = 0.04, which

would produce only small changes in e and z. To have a significant influence of the

caution, Mtt/T 2 must be order one, which implies an extremely large estimation error.

It is probable that the regulator performance would be unacceptable with such large

errors. The recursive identification algorithm is often started with extremely large

values of P0 (typically P0/T 2 & I0). The caution would then be active at the start

and would have the effect of limiting or smoothing the control until the parameters

are estimated well. However, W e or WAS could be used instead, with the same effect.

Also, the identifiability problem with a closed-loop system can lead to large estima-

tion errors for individual parameters, which would be reflected in large values of

the error variance P (although P/T 2 could still be small). The caution could

become effective in this case.

Recall that a form of learning controller can be obtained by using %c < 0. The

control diverges at _cMtt/T 2 = -i (if W 0 = WAS = 0). For the learning to be effec-

tive however, the magnitude of %cMtt/T 2 must be order one. Hence this learning

controller operates near the divergence, and with a much reduced stability range for

the closed-loop control. These characteristics make this type of dual controller

unacceptable.

Adaptive Identification

To examine the characteristics of the recursive parameter identification, con-

sider the algorithm for the identification of T in the global helicopter model:

= T + k - z 0 - T en)n n-I n(Zn n-I

where

m = +
n Pn- i qn- 1

Pn I = m-ln + 0n2/rn ' or Pn = mnrn/(rn + mn n02)

k n = Pnen/rn = mnen/(r n + mnSZn)

The generalized least-squares solution is obtained by setting q = 0:

n n

Pn-' = p-ln_1 + 0n/rn = p_l + _ 0_/r i __ E 02/r i
i=l i=l

en/r n
k =
n n

E 8Z/rii
i=l

2
For the least-squares case, r n = constant; therefore, k n = 0n/Z8 i approaches zero as

n increases. This algorithm is not appropriate for recursive identification because

it shuts off. As data are acquired, each new piece of information is worth less and

less compared with the accumulated knowledge. In contrast, by using the exponential

34



window method, each succeeding measurement is weighted more highly. With

rn = _n(o < _ < I), the solution for p_ = pn/_ n is

n n-i

i/Pn, , 02 n _z n-1= _/Pn-I + = _ /P0 + En
i=i i=0

k = pn*On n

e
n

n-I
2 i

en_i_
i=0

Note that

n-I n

E ai = i- _
1 -

i=O

so in the steady-state limit, when e is constant for the closed-loop system,

p_ m 0Z/(l - _) and k _ (i - _)/e. In numerical simulations of the exponential-

window filter, good results were obtained when _ was small.

The Kalman filter is obtained for q > 0. In the limit of no measurement noise,

r = 0, the solution is Pn = 0 and k n = I/e n (which is independent of q). This

result reflects too much confidence in the latest measurement, but it is useful for

comparison with the general solutions. The properties of the Kalman filter can be

examined in the steady-state limit (disregarding the question of whether the steady

state exists). The system is controlled, so e is constant in that limit. Hence the

equation for p has the solution

p/q = (1/2)[-1 + (I + 4r/e2q) I/z]

and ke = pe2/r = (p/q)(e2q/r). For small r/e2q then:

p/q m r/e2q - (r/62q) 2

ke m 1 - r/e2q

and for large r/02q:

Note that 0 < p/q < r/e2q for finite and nonzero r/e2q, so 0 < ke < i or

Jk I < 1/le I . Hence the Kalman-gain k is always smaller than the solution for zero

measurement noise (r = 0).

When zn = z 0 + te n + v n is substituted, the Kalman filter becomes

= (I - knen)T + k _ T + k vn n-I nn nn
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The dynamics of this equation will be examinedseparately, although in fact the filter
and controller form a coupled system. Note that in general (i - knen) = Pn/mn, which
is positive and less than i. In the steady-state limit, kn_n is constant, so the
filter equation is time-invariant with eigenvalue %= i - k0. Recall 0 < ke < i,
so 0 < _ < i; the filter is stable. For small r/e2q

-" r/82q m 0

and for large r/O2q

% m 1 - 1/(r/e2q) I/2 _ i

Now % m 0 implies immediate convergence, _n = T; and % _ i implies no convergence

at all, Tn = Tn-1" Hence a large value of q is better than a large value of r.

The limit q/r = 0 is the least-squares algorithm, so the tracking ability will be

poor for large r/e2q. The converged solution of the filter is T = T, unless _ = i

exactly. The filter response to the measurement noise is

o_/q = (r/82q)/(l + 4r/@2q) I/2

The mean-square response of the identified parameter, _, is large for large values

of r/O2q.

In general, the solution for small values of e = r/82q is

pn/qn_l _ i/(I + 8_qn_i/rn) + 0(s 3)

rn/8_qn_ I + 0(e 2)

So p/q is order _ small always. This result gives the steady-state solution and

the limit r = 0 properly too. If the solution is started with i/Po = 0, then

Pl = rl/8_" So Pn immediately has the order required for the small r/82q
solution.

The general solution for large values of r/82q is

Pn/qn-I m (Pn-I/qn-I + i) - (enqn_12 /rn)(Pn_i/qn_l + i)2 + 0(_3e2)

where _ = p/q and e = 82q/r. This equation is valid only if I_ I < g-l, that is,

if p/q i_ smaller than order e-1. Indeed, this equation eventually gives p/q

order c -I/2, which is the proper steady-state solution also. If p/q is order

_-i, however, the solution to lowest order is

qn_i/Pn _ qn_i/Pn_l + 0_qn_i/r n + 0(7 -2 )

Again, i/Po m 0 gives Pl = rl/Sz I" So this order e-I solution is encountered at

the start of the algorithm, and whenever p/q becomes too large. If the order _-I

solution proceeds for N steps, then

qn_I/pn = _ e2qi_I/r i -_ N e

N steps
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So eventually p/q becomes smaller than order ¢-i, and the order C-I/2 solution

is encountered. The number of steps that the solution remains order s-1 is

inversely proportional to s. In the limit e = 0, the order c-I solution is

always valid; in fact, the equation above is the exact solution for g = qO2/r = 0

(namely, the least-squares limit).

For the global model, it is anticipated that

@2q/r = (@2/e_)(q/T2)/(r/z_)

will be order one for typical values of q and r. For the identification of

corresponding parameter

qir= (qJ4)J(riz )

z 0, the

should also be order one. With the local model however, "O" is interpreted as A@,

and

Ae_q/r = (Ae21e_)(q IT2)l(rtz2)o _ (Ae/eo)2

will be small. Hence, difficulties may be anticipated with identification of the

local model. In numerical simulations of this case, the estimate of the local T

diverged in the presence of measurement noise (the filter shuts off without measure-

ment noise). The controlled response remained acceptable however. The system was

stable because the estimate of T was greater than the true value. The divergence of

the estimate was not eliminated by the use of WAO, a large value of q, a limit on

the minimum magnitude of AO, or caution. The estimate did not diverge when T

varied with time, although the tracking ability of the filter was not as good as when

the global model was used.

Identifiability

When both z0 and T are identified, the Kalman filter is

= [i - k@ n(:on)1- k JVon_U n

In the steady state, where O and the Kalman gains are constants, the eigenvalues of

this equation are X = i and X = i - k z - k0, with corresponding eigenvector matrix

As discussed above, the k = 1 eigenvalue reflects the problem of identifying two

parameters with one measurement for a closed-loop system. In numerical simulations of

the above equations, the identified parameters diverged in the presence of measurement

noise, with _0 + T0 remaining near the correct value. The estimated value of T

was large, so the controller was stable, and the controlled response remained accept-

able. The use of WA@ or caution did not improve the identifiability. The estimates
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did not diverge when the parameters varied with time, although the undamped(z0 + Te)
modewas still evident.

Someof the phenomenaencountered by Molusis et al. (1981) in tests of an adap-
tive open-loop regulator are consistent with the use of a cautious controller in the
context of the identifiability problems with a closed-loop system. They were identi-
fying 42 parameters, using six measurements,so a large parameter variance P would
be expected in steady-state conditions. Direct evidence of the identifiability prob-
lem is provided by the fact the T-matrix obtained by on-line identification was not
the sameas that obtained by off-line identification, and by the observation that the
T-matrix identified on-line was not repeatable. A large value of P would make the
caution effective, which is consistent with the fact that the cautious controller was
smoother than the deterministic controller, and with the observation that the weight-
ing matrix Wz influenced the solution (Hammond,1980) (those are the influences
of the effective control weight We due to caution). That the roll momentor
lateral acceleration was not reduced could also be due to a large effective value of
We• The observation that during speed changes the controller actually maintained the
vibration below the levels obtained in steady conditions is consistent with reduced
caution resulting from improved identifiability when the parameters vary. There are
however other factors, such as nonlinearity, that might account for someof these
effects. The argument is also contradicted by the statement that the samestabilized
condition was approachedwith the deterministic controller as with the cautious
controller (Hammond,1980).

Adaptive Open-LoopRegulator

For the combination of open-loop control and on-line identification, the coupled
controller and filter dynamics must be considered in order to analyze the regulator
performance. The steady-state solution (if it exists) of the Kalmanfilter is

z = zo + TG= Zo + _8

In this result, either z0 or T maybe estimated on-line, and the other parameter
obtained from off-line calculations; or both maybe identified on-line. A linear
system is assumed,but T maybe the local derivative of z(8). The Kalman-gains
influence the convergence of the filter, but not the steady-state solution. Using
the open-loop control solution, the steady-state response of the regulator is then

e = [-%Wz/(_2wz + w0)][z0 + (T - #)_]

= (-zo/T)l(l + W0/T@W z)

z = zo(Ws/TTWz)/(I + We/TTWz)

which is the same as the closed-loop control result. The response depends on the

actual response z 0 rather than the estimate _0, because of the on-line identifica-

tion. Recall that the open-loop response depends on the error in e0" From

zo + T8 = zo + T8 it follows that

T/T = (Zo/Zo)(l + W0/T2Wz) - Wo/T2W z
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zol£o = (T/@ + wel¢2Wz)/(1 + Wel_2wz)

and so

i - _oleo = I - T£01@z0 = (_01z0 - I)(We/_2Wz)

= (i - T/T)(We/T2Wz)/(T/T + W0/T2Wz)

which is zero regardless of the parameter errors if W e = 0. The filter identifies

one or both parameters such that the measured value of z will be predicted cor-

rectly. Hence the parameter errors must compensate in the vicinity of this value of

the response. With a controlled system the response will be small, so the error in

the estimate of O0 (where z = 0) should be much smaller than the error in the indi-

vidual parameter estimates. Thus the regulator has good closed-loop performance.

When only z0 is identified, the equations for the filter and controller are

Z0n = Z0n_z + k - ^ - Te)n(Zn Zon_ I

= +
On CZ0n_ z CA68n_ z

This system is linear. Although kn varies with time initially, it depends only on

qn and rn, not on @n in this case. Assuming that qn and rn are constant, it is

appropriate to use the steady-state solution for kn. Substituting for

zn = z 0 + T8 n + vn gives the equations

\ nl

k(T - T)CAe l ^c0 )+

Ik(z0 0+ Vn) 1

In the ideal case, with no error in the estimate of T, the filter is decoupled from
^

the controller. The estimate Z0n follows z 0 + vn (actually measured as zn - T6n)

with a first-order lag (% = i - k). Then the control 8n follows Z0n with a lag

due to WA8 (% = CA@),, and the response zn is determined by @n" The steady-state

response of the filter to the measurement noise is

o20/r = k/(2 - k)

2
where °0 is the mean-squared response of _0n to the noise vn, which is a
Gaussian random variable with zero mean and variance E(v 2) = r. Then the mean-

squared response of the control @n is

The first factor in o_ identical to the response of the closed-loop controller to

measurement noise. The product of the last two factors is always less than i, so the

adaptive open-loop regulator has a smaller response to noise than does the closed loop

controller. The eigenvalues of the coupled system are the solutions of
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%2_ [i - k + k(T - T)C + CA@]%+ (i - k)C&e = 0

If T = T, the filter and controller are decoupled and the solutions are %= i - k
and %= CAe. In general, the criterion for stability (1%1< i) is

-W0/T2Wz < T/T < 1 + [(2 - k)/k][1 + (W@+ 2W4@)/T2Wz]

If W@= WAO= 0, the system is stable if 0 < T/T < 2/k. Since k < i, the stability
range is larger than for the closed-loop controller.

In numerical simulations of the adaptive open-loop regulator, good performance
was obtained when only z0 was identified, although the ability to handle a system
with a time-varying value of T was not very good. In wind-tunnel tests however,
Molusis et al. (1981) found that the regulator using identification of z0 only was
not successful in reducing the vibration.

CONCLUSIONS

Self-tuning regulators for the multicyclic control of helicopter vibration have
been examined. The topics considered have included the selection of the parameters
for the identification and control algorithms; the best combination of identification,
control, and helicopter model options for the regulator; and the regulator perfor-
mance, involving steady-state response, stability, convergence, and identifiability.

Regarding the identification algorithms, it is concluded that the values of the
parameter variance and measurementnoise variance must be correctly chosen for proper
performance of the regulators. The use of the Kalman filter is preferred to the
exponential-weighted generalized least squares, since the former is more flexible and
the theory provides a guide for the choice of the parameters.

Regarding the controller algorithms, the analysis has provided guidelines for
the choice of the parameters. The use of the largest value of WA@that does not
makethe response too sluggish is appropriate, to improve the transient response, the
sensitivity to measurementnoise, and the sensitivity of the stability to parameter
errors. The rate limit WA@should always be used during the start of the recursive
identification, and a small value of WA@can be used to avoid the possibility of
control divergence, should the estimated T-matrix be too small. The control magni-
tude constraint W8 maynot be too useful, since it limits the control relative to
the ideal value O0 rather than relative to an absolute value. Absolute limits on
the control magnitude are probably better applied by uniformly reducing the elements
of @ before the commandsignals are sent to the actuators. The benefits of the
cautious controller can probably be obtained more directly by the appropriate choices
of W@and WA@(which could be temporarily increased in special circumstances such as
the start of the identification algorithm). The use of a dual controller does not
appear necessary, since the identifiability problems encountered are not accompanied
by poor controller performance.

Regarding the regulator algorithms, it is concluded that the following options
(in order of preference based on simplicity) are potentially applicable to the control
of helicopter vibration.
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I. Invariable open-loop regulator: This is the simplest option. It has no
stability problems. This regulator will be satisfactory only if there are no signif-
icant parameter errors.

2. Invariable closed-loop regulator: This option provides good performance if
the measurementnoise is not too large. It will be satisfactory if the parameters do
not vary so much that the system becomesunstable.

3. Adaptive open-loop regulator, with only the uncontrolled vibration level
identified: This is the simplest adaptive option. It has no identifiability prob-
lems, and mayprovide good performance and stability. This regulator will be satis-
factory if it can provide good control, particularly with time-varying parameters.

4. Adaptive open-loop or closed-loop regulator, with all parameters identified:
This option probably has the best performance with time-varying parameters. The open-
loop and closed-loop cases are nearly indistinguishable in terms of system perfor-
mance. This regulator will be satisfactory if the identifiability problems do not
degrade the performance, and if the helicopter response is not too nonlinear.

5. Adaptive closed-loop regulator, with the local helicopter model: This option
is probably most suitable for very nonlinear systems; however, there are identifiabil-
ity problems.

The theoretical and experimental work to date concerning these regulators sug-
gests that an adaptive system will be needed. Hence, it is anticipated that one of
the last three options will be required for helicopter vibration control.

RECOMMENDATIONS

Further work on self-tuning regulators for the multicyclic control of helicopter
vibration is required in the following topics.

i. The conclusions of the present report must be verified or modified for the
multivariable case. The implications of the use of cosine and sine componentsin the
input and measurementsmust be investigated.

2. Techniques for the numerical implementation of the identification and control
algorithms must be developed.

3. The regulator development can be extended; for example, dynamics can be
included in the helicopter model, and dual controllers could be considered further.

4. The regulator designs must be examinedmore thoroughly in terms of the spe-
cific characteristics of the helicopter, including the selection of the control and
measurementvariables; off-design performance or the performance with time-varying
parameters; the influence of noise and nonlinearities; and the influence of the
regulator on the helicopter trim and on the stability augmentation system.
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Finally, the regulators require further experimental development and experimen-
tal confirmation of their performance in order to complete the development.

AmesResearch Center
National Aeronautics and SpaceAdministration

Moffett Field, California 94035, September21, 1981
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